

Recurrent stroke under anticoagulation in patients with mild MS with AF : prefer LAA occlusion

Young Keun On, MD, PhD, FHRS Samsung Medical Center Sungkyunkwan University School of Medicine

Recurrent stroke under anticoagulation in patients with mild MS with AF

Stages of MS

Stage	Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	
A	At risk of MS	 Mild valve doming during diastole 	Normal transmitral flow velocity	None	
В	Progressive MS	 Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets Planimetered MVA >1.5 cm² 	 Increased transmitral flow velocities MVA >1.5 cm² Diastolic pressure half-time <150 ms 	 Mild-to-moderate LA enlargement Normal pulmonary pressure at rest 	
С	Asymptomatic severe MS	 Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets Planimetered MVA ≤1.5 cm² (MVA ≤1.0 cm² with very severe MS) 	 MVA ≤1.5 cm² (MVA ≤1.0 cm² with very severe MS) Diastolic pressure half-time ≥150 ms (Diastolic pressure half-time ≥220 ms with very severe MS) 	 Severe LA enlargement Elevated PASP >30 mm Hg 	
D	Symptomatic severe MS	 Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets Planimetered MVA ≤1.5 cm² 	 MVA ≤1.5 cm² (MVA ≤1.0 cm² with very severe MS) Diastolic pressure half-time ≥150 ms (Diastolic pressure half-time ≥220 ms with very severe MS) 	 Severe LA enlargement Elevated PASP >30 mm Hg 	

2014 AHA/ACC Valvular Heart Disease Guideline

MS with AF

- 1/3 of embolic events occur within 1 month of the onset of AF
- 2/3 of embolic events occur within 1 year
- Patients with MS and AF who have experienced an embolic event have recurrences at a rate of 15~40 events/100 pt-mo.
- Thrombi in MS appears to be related to the low-flow pattern and have a much more frequent location out of LAA and being often giant.

Caterina RD, Camm AJ. Europace 2016;18:6-11

Medical therapy for MS

Class I

- Anticoagulation (vitamin K antagonist [VKA] or heparin) is indicated in patients with 1) <u>MS and AF (paroxysmal, persistent, or permanent)</u>, or
 - 2) MS and a prior embolic event, or
 - 3) MS and a left atrial thrombus.

(Level of evidence: B)

2014 AHA/ACC Valvular Heart Disease Guideline

LA Appendage

- LAA
 - : a long tubular, hooked structure of variable morphology and size (0.77~19.27 cm)
 - : trabeculated with pectinate muscles and actively contractile
 - : remnant of the original embryonic LA

Thrombus in LA Appendage

- Stroke or systemic embolism in AF patients
 - : due to thrombus formation in the LA Appendage (90%)
- LAA : prone to thrombus formation in AF due to increased blood stasis and extensive trabeculations
- Oral anticoagulation is a well established therapy to reduce the risk of stroke in AF patients, but a risk of bleeding
- LAA occlusion is a possible alternative to oral anticoagulation in the prevention of stroke or systemic embolism in AF

Warfarin's TTR and clinical event rates among warfarin treated NVAF patients

- LAA occlusion is a possible alternative to oral anticoagulation in the prevention of stroke or systemic embolism in AF
- FDA has approved the use of the Watchman device (Boston Scientific, Natick, MA) as an alternative to warfarin OAC based upon data from the PREVAIL and PROTECT-AF trials.
- The Amplatzer cardiac plug (St. Jude Medical, St. Paul, MN) Or surgical closure with the AtriClip device system (AtriCure, West Chester, OH) have shown promise but lack clinical data.

LAA Occlusion

The LAA device reduces the risk of stroke by closing off the LA appendage, which is known to be the main source of blood clots in patients with AF.

Intervention therapy for MS

Class I

- Percutaneous mitral balloon commissurotomy for <u>symptomatic</u> patients with severe MS (mitral valve area ≤1.5 cm2, stage D) and favorable valve morphology in the absence of LA thrombus or moderateto-severe MR (Level of Evidence: A)
- Mitral valve surgery (repair, commissurotomy, or valve replacement) for severely <u>symptomatic patients (NYHA class III to IV) with severe MS</u> (mitral valve area ≤1.5 cm2, stage D) who are not high risk for surgery and who are not candidates for or who have failed previous percutaneous mitral balloon commissurotomy (Level of Evidence: B)
- Concomitant mitral valve surgery for patients with severe MS (mitral valve area ≤1.5 cm2, stage C or D) undergoing cardiac surgery for other indications (Level of Evidence: C)

2014 AHA/ACC Valvular Heart Disease Guideline

Intervention therapy for MS

Class IIa

- Percutaneous mitral balloon commissurotomy for <u>asymptomatic</u> patients with severe MS (mitral valve area ≤1.5 cm2, stage C) and favorable valve morphology in the absence of LA thrombus or moderateto-severe MR (Level of Evidence: C)
- Mitral valve surgery for severely <u>symptomatic patients (NYHA class III</u> to IV) with severe MS (mitral valve area ≤1.5 cm2, stage D), provided there are other operative indications (aortic valve ds, CAD, TR, Ao aneurysm) (Level of Evidence: C)

Class IIb

• Mitral valve surgery and excision of the LA appendage for patients with severe MS (mitral valve area ≤1.5 cm2, stages C and D) who have had recurrent embolic events while receiving adequate anticoagulation (Level of Evidence: C)

2014 AHA/ACC Valvular Heart Disease Guideline

Recurrent stroke under anticoagulation in patients with **mild MS with AF**

Consider

- : increase INR level 2.5~3.5
- : change to NOAC (Non-vitamin K Oral Anticoagulant)
- : implant the LAA occlusion device
- : surgical procedure of mini-maze

Watchman Left Atrial Appendage System for Embolic Protection in Patients With AF (PROTECT AF)

First prospective randomized clinical trial of LAA closure device

Study Objective:	Evaluate the efficacy and safety of the WATCHMAN LAA Closure Device as compared to long-term warfarin therapy in patients with non-valvular atrial fibrillation and $CHADS_2$ score ≥ 1
Study Design:	Prospective, randomized (2 Device: 1 Control), non-inferiority study of the Watchman device compared to long-term warfarin therapy
Primary Endpoint:	Non-inferiority of the WATCHMAN device to warfarin therapy for the composite of ischemic stroke, hemorrhagic stroke, systemic embolism and cardiovascular/unexplained death
Additional Endpoints:	Life-threatening events including device embolization requiring retrieval, pericardial effusion requiring intervention, cranial and GI bleeding, and bleeding requiring transfusion \geq 2 units PRBCs
Patient Population:	WATCHMAN n=463 Control n=244 Roll-in n=93
Number of Sites:	59 (55 U.S., 4 EU)

Holmes DR, et al. Lancet 2009; 374: 534

Watchman Left Atrial Appendage System for Embolic Protection in Patients With AF (**PROTECT AF**)

Inclusion criteria	Exclusion criteria			
 Age >18 years, 	Contraindications to warfarin,			
• Nonvalvular AF (paroxysmal,	Comorbidities other than atrial fibrillation			
persistent, or permanent),	that required chronic warfarin use,			
 CHADS2 score ≥ 1, 	LAA thrombus,			
	Patent foramen ovale with atrial septal			
	aneurysm and right-to-left shunt,			
	Mobile aortic atheroma,			
	Symptomatic carotid artery disease,			
	• LVEF < 30%,			

• Significant mitral stenosis,

Post-implant protocol-specified medication requirements and warfarin cessation requirements

seal defined as TEE

HUNKWAN.

documented residual peridevice flow <5 mm in width and no definite visible large thrombus on the device

The efficacy of percutaneous closure of the LAA was noninferior to warfarin therapy.

Holmes DR, et al. Lancet 2009; 374: 534

Watchman Left Atrial Appendage System for Embolic Protection in Patients With AF (**PROTECT AF**)

The primary efficacy event rate

3% per patient-year in the Watchman device arm4.3% per patient-year in the warfarin arm (RR 0.71, 95% CI 0.44–1.3)

• The primary safety events

5.5% per patient-year in the Watchman device arm3.6% per patient-year in the warfarin arm (RR 1.52, 95% CI 0.95–2.7)

- The majority of adverse safety events in the Watchman arm were driven by periprocedural events.
- After the peri-procedural period, adverse safety events did occur more frequently in the warfarin arm.

Prospective Randomized Evaluation of the Watchman LAA Closure Device in patients with AF vs Long-term warfarin therapy (**PREVAIL**)

- Designed to investigate the concerns from the PROTECT-AF trial
- 20% of enrolling centers implanting physicians were required to have no prior experience in implanting the Watchman device.
- 50 centers, **407 patients** in a 2:1 ratio of device to control
- <u>The first primary efficacy endpoint</u>: a combined of stroke, CV or unexplained death, and systemic thromboembolism over 18 months
- <u>The second primary efficacy endpoint</u>: ischemic stroke and systemic thromboembolism from 8 days after randomization over 18 months
- <u>The primary composite safety endpoint</u>: all cause mortality, ischemic stroke, systemic thromboembolism, device or procedure related events requiring open cardiac surgery, major endovascular intervention between randomization, 7 days of the procedure, or hospital discharge, whichever was later

Prospective Randomized Evaluation of the Watchman LAA Closure Device in patients with AF vs Long-term warfarin therapy (**PREVAIL**)

Inclusion criteria	Exclusion criteria		
• Nonvalvular AF (paroxysmal,	Contraindications to warfarin or aspirin,		
persistent, or permanent),	Comorbidities other than atrial fibrillation		
 CHADS₂ score ≥ 2 or 1 and any 	that required long-term warfarin use,		
following risk factors	Previous stroke/TIA within 90 days.		
female \ge 75 years, EF \ge 30% but <35%,	 Symptomatic carotid artery disease, 		
age 65 to 74 years and either diabetes	• Patent foramen ovale or atrial septal defect		
or coronary disease, age \geq 65 years with	requiring treatment,		
heart failure	Patients in whom clopidogrel was indicated		

Freedom From First Primary Endpoint (Intention-to-Treat) (PREVAIL)

a combined of stroke, CV or unexplained death, and systemic thromboembolism

Holmes DR, et al. J Am Coll Cardiol 2014;64:1-12

Freedom From Second Primary Endpoint (Intention-to-Treat)

(PREVAIL)

18 month second primary endpoint2.53% in the Watchman arm and 2.0% in the control arm

ischemic stroke and systemic thromboembolism from 8 days after randomization

Holmes DR, et al. J Am Coll Cardiol 2014;64:1-12

Safety Endpoint (Intention-to-Treat) (PREVAIL)

	% (n/N)	95% Crl
Safety primary endpoint results	2.2% (6/269)	2.652%
	No. of Events	% of Subjects
Safety events by type		
Device embolization	2	0.7
Arteriovenous fistula	1	0.4
Cardiac perforation	1	0.4
Pericardial effusion with cardiac tamponade	1	0.4
Major bleed requiring transfusion	1	0.4

PROTECT AF / PREVAIL Combined

The non-inferiority and possible superiority efficacy signal from PROTECT-AF and the acceptable safety signal from PREVAIL

		HR	p Value
Efficacy		0.79	0.22
All stroke or SE	⊧ ∳ (1.02	0.94
Ischemic stroke or SE		1.95	0.05
Hemorrhagic stroke \vdash		0.22	0.004
Ischemic stroke or SE >7 da	iys 🕂 🔵 🚽	1.56	0.21
CV/unexplained death		0.48	0.006
All-cause death	⊢ ● −	0.73	0.07
Major bleed, all	⊢ • −−1	1.00	0.98
Major bleeding, non procedure-relate	d ⊢_●	0.51	0.002
Fa	vors Watchman 🛛 🗕 🗕 Favors v	varfarin	
0.01	0.1 1	10	
	Hazard Ratio (95% Cl)		

Holmes DR, et al. J Am Coll Cardiol 2015;65:2614-23

Surgical treatment of AF

- 48 studies were included comprising 3,832 patients
- the classical 'cut and sew' Cox-Maze III technique and radiofrequency, microwave and cryoablation techniques
- **30-d mortality : 2.1% and 4.2%** (cut and sew technique and alternative sources, p=0.21)

					Alternative sources	CS	P value
Age (yrs; mean)					61.2	55.0	0.005
Duration AF (yrs; mean)					5.4	5.5	0.90
Left atrial size (mm;mean)					55.5	57.8	0.23
LVEF (%; mean)					57	58	0.63
	Chronic AF (%)				92.0	77.1	0.05
	Lone AF (%)				1.6	19.3	0.06
	Biatrial LP (%)				30.3	100	0.00
		Bleeding (%)			4.4	4.9	0.65
		IABP (%)			2.4	2.5	0.87
		CVA (%)			1.6	0.5	0.21
			30-d Mortality (%)		4.2	2.1	0.09
			PM (%)		4.9	5.8	0.21
				SR (%)	78.3	84.9	0.03

Khargi K, et al. Eur J Cardiothorac Surg. 2005;27(2):258

Cox maze IV procedure for AF

- right minithoracotomy (n=104) and sternotomy (n=252)
- overall complication rate : 6% vs 13%, p=0.044
- 30-day morality : 0% vs 4%, p=0.039

Lawrance CP, et al. J Thorac Cardiovasc Surg 2014;148:955

3

Left atrial appendage closure

VS

Recurrent stroke under anticoagulation in patients with mild MS with AF

Consider

- : increase INR level 2.5~3.5
- : change to NOAC (Non-vitamin K Oral Anticoagulant)
- : implant the LAA occlusion device
- : surgical procedure of mini-maze

